手机版

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说

时间:2025-07-04   来源:未知    
字号:

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理

几何证明及通过几何计算进行说理问题

例1 2013年上海市黄浦区中考模拟第24题

已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3). (1)求此二次函数的解析式;

(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.

①求正方形的ABCD的面积;

②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA. 动感体验

请打开几何画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

请打开超级画板文件名“13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,∠PAE与∠PDA总保持相等,△PAD与△PEA保持相似.

思路点拨

1.数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD=AB.

2.通过计算∠PAE与∠DPO的正切值,得到∠PAE=∠DPO=∠PDA,从而证明△PAD∽△PEA.

满分解答

(1)将点P(0, 1)、Q(2, -3)分别代入y=-x2+bx+c,得

c 1, b 0,

解得

c 1. 4 2b 1 3.

所以该二次函数的解析式为y=-x2+1.

(2)①如图1,设点A的坐标为(x, -x2+1),当四边形ABCD恰为正方形时,AD=AB.

此时yA=2xA.

解方程-x2+1=2x

,得x 1所以点A

1.

因此正方形ABCD

的面积等于1)]2 12

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理

②设OP与AB交于点F

,那么PF OP OF 1 1) 3 1)2.

PF所以tan PAE 1.

AF又因为tan PDA tan DPO

OD

1, OP

所以∠PAE=∠PDA.

又因为∠P公用,所以△PAD∽△PEA.

图1 图2

考点伸展

事实上,对于矩形ABCD,总有结论△PAD∽△PEA.证明如下:

如图2,设点A的坐标为(x, -x2+1),那么PF=OP-OF=1-(-x2+1)=x2.

PFx2

所以tan PAE x.

AFx

又因为tan PDA tan DPO

OD

x, OP

所以∠PAE=∠PDA.因此△PAD∽△PEA.

例2 2013年江西省中考第24题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: (1)操作发现:

在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).

①AF=AG=

1

AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME. 2

(2)数学思考:

在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理

所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;

(3)类比探究:

在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.

图1

动感体验

请打开几何画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

请打开超级画板文件名“13江西24”,拖动点A可以改变△ABC的形状,可以体验到,△DFM≌△MGE保持不变,∠DME=∠DFA=∠EGA保持不变.

思路点拨

1.本题图形中的线条错综复杂,怎样寻找数量关系和位置关系?最好的建议是按照题意把图形规范、准确地重新画一遍.

2.三个中点M、F、G的作用重大,既能产生中位线,又是直角三角形斜边上的中线. 3.两组中位线构成了平行四边形,由此相等的角都标注出来,还能组合出那些相等的角?

满分解答

(1)填写序号①②③④.

(2)如图4,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形ACE斜边上的高, 所以F、G分别是AB、AC的中点.

又已知M是BC的中点,所以MF、MG是△ABC的中位线.

所以MF

11

AC,MG AB,MF//AC,MG//AB. 22

所以∠BFM=∠BAC,∠MGC=∠BAC.

所以∠BFM=∠MGC.所以∠DFM=∠MGE.

因为DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,所以EG

11

AC,DF AB. 22

所以MF=EG,DF=NG.

所以△DFM≌△MGE.所以DM=ME. (3)△MDE是等腰直角三角形.

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理

图4 图5

考点伸展

第(2)题和第(3)题证明△DFM≌△MGE的思路是相同的,不同的是证明∠DFM=∠MGE的过程有一些不同.

如图4,如图5,∠BFM=∠BAC=∠MGC.

如图4,∠DFM=90°+∠BFM,∠MGE=90°+∠MGC,所以∠DFM=∠MGE. 如图5,∠DFM=90°-∠BFM,∠MGE=90°-∠MGC,所以∠DFM= …… 此处隐藏:339字,全部文档内容请下载后查看。喜欢就下载吧 ……

【压轴题_精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)