CHAPTER FIVE: Options and Dynamic No-Arbitrage
A Brief Introduction of OptionsAn option is the right of choice exercised in future. The holder (buyer, or longer) of the option has a right but not an obligation to buy or sell a special amount of the asset with a special quality at a predetermined price. Call and put
Exercise price X Expiration date T American options (C and P) vs. European options ( c and p) 2
— A Brief Introduction of Options (Cont.)The payoff profiles of call and putCallLong+0 _
PutShort Long+ 0
Short+
+
ST 0 X_
X
ST_
ST 0 X_
X
ST
In-the-money, out-of-the-money, at-the-money, intrinsic value and time value3
The Basic No-Arbitrage1) 2) 3) 4) If
c t C t S t p t Xe rf T t
,
p t P t X
C t c t 0 T1 t T2 t
,
P t p t 0 C1 t C2 t ,
, then
P t P2 t 1
5)
C t max S t X ,0 c T max S T X ,0 P t max X S t ,0 p T max X S T ,0 4
The Basic No-Arbitrage (Cont.)The underlying is a non-dividend-paying stockc t max S t Xe
rf T t
,0
Suppose c t S t XeArbitrage Position
rf T t
, thenCash Flow on the expired date S T
Immediate Cash Flow
Short a stockLong an European call Long riskless security Net cash flows Arbitrage Opportunity
S t c t
max S T X ,0
XeS t Xe
rf T t
X
rf T t
c t max S T X ,0 S T X
!
0
0
The Basic No-Arbitrage (Cont.) r T t max t Xe S ,0 c t S t f
T
e
rf T t
0
c t S t
PropositionIf the period to expiration is very long, the value of an European call is almost equal to its underlying.
C t max S t Xe
rf T t
,0 max S t X ,0
PropositionAn American call on a non-dividend-paying stock should never be exercised prior to the expiration date.
C t c t
The relationship between American options and European optionsp t max Xe
rf T t
S t ,0
P t max Xe
rf T t
S t ,0
P t max X S t ,0 ? P t max X S t ,0 Conclusion:
C t c t
and
P t p t 7
The Parity of Call and Put The underlying is a non-dividend-paying stock
S t c t p t Xe rf T t
rf T t
S can be replicated by c, p and riskless security Suppose S t c t p t
XePositionBuy a share
Arbitrage!
Cash flow attime t
Cash flow at time T
Short a callLong a put Short treasury
S t c t p t
S t XS T
0X S T
S T S T X
S t X
Xe
rf T t
0 X
X
Net cash flow S t c t p t Xe rf T t
0
0
Relationship between exercise and forward priceS t Fe rf T t
F X F X F X
c t p t c t p t c t p t
Non-dividend-paying stock’s American call and putC t c t P t p t
S t C t P t Xe C t P t S t Xe
rf T t
rf T t
C t P t S t X ?9
Non-dividend-paying stock’s American call and put (Cont.) To Prove C t P t S t X t t TPosition Short a share Long an Amer. call Cash flow at Cash flow at time t when put exercised
time t
S t X S t
S t
Short an Amer. putLong treasury Net cash flow
C t P t
X S t C t P t X 0 rf T t
X S t r f t t
C t
S t X S t C t 0
Xe
Xe f
r t t
X C t
Xe fXe fr t t
r t t
C t S t
C t max S t Xe
,0 S t Xe
rf T t
0
Xe f
r t t
Xe
rf T t
0
Non-dividend-paying stock’s American call and put (Cont.)
S t X C t P t S t Xe Underlying is dividend-paying stockPresent value of a long stock forward position
rf T t
C t c t S t PV D Xe P t p t Xe r f T t
r f T t
S t PV D
Present value of dividends at time t
Present value of a short stock forward position11
Underlying is dividend-paying stockFor European call and put
S t c t p t XeFor American call and put
rf T t
PV D rf T t
Proved!
S t PV D X C t P t S t XeHow to prove it? Dividend paid
C t P t
Holds for nondividend-paying stock underlying
Please see the next page!12
Proof ofCash flow at time t
C t c t
Position
Cash flow at time t when put exercised
S t X
S t Effect of dividends PV T t D c t Long an Euro. callShort a share Short an Amer. put Long treasury
S t PV T t D ct X S t
S t
X
P t
S t PV T t D ct
X c t P t S t PV t t D X
Xe fXe fr t t
r t t
0
0
Xe f
r t t
Net cash flow
0
PV T t D Xe fr t t
X c t
PV T t D r t t
Xe f
r t t
c t S t
0 Xe rf t t
c t S t PV D Xe
rf T t
c t S t PV T t D Xe …… 此处隐藏:2577字,全部文档内容请下载后查看。喜欢就下载吧 ……