手机版

Multiseparability and Superintegrability for Classical and Q(14)

时间:2025-07-01   来源:未知    
字号:

Abstract It has long been known that there are potentials on n-dimensional constant curvature spaces for which a given Hamiltonian system in classical mechanics, and Schrodinger equation in quantum mechanics, admits solutions via separation of variables in

Separation occurs here in parabolic and parabolic coordinates of the second type 1 x=; y= 2 (? ): As an illustration of the utility of the notion of a quadratic algebra consider the last potential given. A basis for the quadratic algebra consists of L; L and H with de ning relations 1 R; L]=?4L H+ B B; R; L]= 4L H+ 2 (B? B ) R= 4L H+ 4L H? 16 H+ (B? B )L? 2B B L? 2 (B+ B ) with R= L; L]. If we look for eigenfunctions of the

operators L; L respectively, we have L 'm= m 'm; L n= n n: If we write X L n= Cn2 2 1 2 1 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 2 1 2 1 2 1 2 1

Cn C (2? n? )= (8E n+ B B+ 16 E ) n: These relations in turn imply that (B? B )+ 16 E Cnn=? 8E and Cnn= Cn n are the only nonzero coe cents. Indeed they can essentially be determined by the relation p 4?2E (jCn;n j? jCn?;nj )= 8E n+ B B+ 16 E where the eigenvalues m and n are given by (B+ B )? (2n+ 1)p?2E B? (2m+ 1)p?2E; n=2? m=2? 8E 16E and the quantisation condition for E is p 4? B 8+ B=?(q+ 2)?2E E for integer q.1 2 1 2 2 1 2 2+1+1+1 2 1 2 1 2 2 1 1 2 2 2 1 2 2

then the quadratic algebra relations imply 1 ( n? )+ 8E]Cn=? 2 (B? B )? 16 E]2

X

2 1

2 2

n

Multiseparability and Superintegrability for Classical and Q(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)