牛顿第二定律
1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.
2.公式:F=ma
3、对牛顿第二定律理解:
(1)F为物体所受到的合外力.
(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.
(3)瞬时性:加速度和合外力具有瞬时对应关系,它们总是同增同减同生同灭。
(4)F=ma中的 F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)独立性:若物体受多个力的作用,则每一个力都能独自产生加速度,并且任意方向均满足F=ma,若运用正交分解,则在相互垂直的两个方向有
(6)同体性:F=ma各个量都是属于同一物体的,即研究对象的统一性。
(7)局限性:只适用于惯性参考系,宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.
二、突变类问题(力的瞬时性)
(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用的物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零(物体运动的加速度可以突变)。
(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:
A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。
B.软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),绳与其物体相互间作用力的方向总是沿着绳子且朝绳收缩的方向。
C.不可伸长:即无论绳所受拉力多大,绳子的长度不变,即绳子中的张力可以突变。
3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:
A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。
B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。不能承受压力。
C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。
【例1】如图(a)所示,一质量为m的物体系于长度分别为L1、L2的两根细绳上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态,现将L2线剪断,求剪断瞬间物体的加速度。
(2)若将图a中的细线L1改为长度相同、质量不计的轻弹簧,如图b所示,其他条件不变,现将L2线剪断,求剪断瞬间物体的加速度。
【例2】如图(a)所示,木块A、B用轻弹簧相连,放在悬挂的木箱C内,处于静止状态,它们的质量之比是1:2:3。当剪断细绳的瞬间,各物体的加速度大小及其方向?
三 、动力学的两类基本问题
1、已知物体的受力情况求物体运动中的某一物理量:应先对物体受力分析,然后找出物体所受到的合外力,根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量.
2、已知物体的运动情况求物体所受到的某一个力:应先根据运动学公式求得加速度a,再根据牛顿第二定律求物体所受到的合外力,从而就可以求出某一分力.
综上所述,解决问题的关键是先根据题目中的已知条件求加速度a,然后再去求所要求的物理量,加速度象纽带一样将运动学与动力学连为一体.
【例3】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.
【例4】如图所示三个物体质量分别为m1、m2、m3,带有滑轮的物体放在光滑水平面上,滑轮和所有触处的摩擦及绳的质量均不计,为使三个物体无相对运动,则水平推力F= .
解析:对m2竖直方向合力为零,所以T=m2g,对m1水平方向只受绳拉力T作用。 所以a=T/m1=m2g/m1, 由于三者加速度一样,所以
F=(ml十m2十m3)a
=(ml十m2十m3)m2g/m1
四、牛顿定律应用的基本方法
①由于物体的受力情况与运动状态有关,所以受力分析和运动分析往往同时考虑,交叉进行,在画受力分析图时,把所受的外力画在物体上(也可视为质点,画在一点上),把v0和a的方向标在物体的旁边,以免混淆不清。
②建立坐标系时应注意:
A.如果物体所受外力都在同一直线上,应建立一维坐标系,也就是选一个正方向就行了。如果物体所受外力在同一平面上,应建立二维直角坐标系。(坐标)
B.仅用牛顿第二定律就能解答的问题,通常选加速度a的方向和垂直于a的方向作为坐标轴的正方向,综合应用牛顿定律和运动学公式才能解答的问题,通常选初速度V0的方向和垂直于V0的方向为坐标轴正方向,否则易造成“十”“一”号混乱。(方向)
C.如果所解答的问题中,涉及物体运动的位移或时间,通常把所研究的物理过程的起点作为坐标原点。 (起点)