海洋技术概论
永冻层中的天然气水合物存在于极地的低压低温区,在俄罗斯、加拿大和阿拉斯加的陆地及大陆架上均有发现,是以一种永冻的水—冰和水合物的混合物形式存在的。Max等认为,海域永冻层水合物是在陆架暴露出水面时,最近一次冰川作用下形成的,之后在海进期陆架被淹没。
(3)水合物层之下的常规天然气藏
含水合物岩层可对常规油、气藏起到屏蔽作用,气水合物层之下往往有大型常规气藏。与水合物相关的甲烷既可产出于水合物本身,也可圈闭于水合物稳定带下方。圈闭于天然气水合物带的常规天然气或石油比包含于气水合物中的非常规天然气在目前更具经济价值。
5.3.1.2 天然气水合物的开采方法
天然气水合物的开采实质上就是使地下的水合物分解,再将分解出来的甲烷气体抽到地面上来。依据水合物相平衡原理,天然气水合物的开采通常有降压法、热激法和试剂注入法 3种基本方法。
(1)减压法
减压法是指通过钻探方法或其他途径降低水合物层下面的游离气体聚集层位的平衡压力,当压力达到水合物分解压力时,界面附近的天然气水合物转化为气体和水。降低压力能达到水合物分解的目的。一般是通过在水合物层之下的游离气聚集层中“降低”天然气压力或形成一个天然气“囊”(由热激发或化学试剂作用人为形成),与天然气接触的水合物变得不稳定并且分解为天然气和水。这种技术在西西伯利亚的Messoyhaka气田得到了应用。
开采水合物层之下的游离气是降低储层压力的一种有效方法,另外通过调节天然气的提取速度可以达到控制储层压力的目的,进而达到控制水合物分解的效果。
减压法最大的特点是不需要昂贵的连续激发,因而可能成为今后大规模开采天然气水合物的有效方法之一。
(2)热激法
该方法是指在压力一定的条件下,注入蒸气、热水、热盐水或其它热流体,也可采用开采重油时使用的火驱法或钻柱加热器法,对水合物稳定层进行加热,将设计区段的温度提高到分解温度,这一温度下,所注热量完全用于水合物的分解作用。再用导管将析出的天然气收集于贮藏器内或采取采集常规天然气输气管道的方式将其输送到船载贮藏器。
这种方法的问题在于储层和水中的大量热能损失,效率很低。特别是在永久冻土区,即使利用绝热管道,永冻层也会降低传递给储集层的有效热量。如果没有热损,注入能量是开发能量的10%左右;有热损时,注入能量可能会超过气体的价值。这种方法非常昂贵,且要求向下注热和向上采气同步进行。
