分析类资料
准确度与精密度的关系
附件:
发现论坛中很多会员都提到类似的问题,将收集到的相关经验资料予以总结,供大家分享:
准确度:测定值与真实值符合的程度
绝对误差:测量值(或多次测定的平均值)与真(实)值之差称为绝对误差,用δ表示。
相对误差:绝对误差与真值的比值称为相对误差。常用百分数表示。 绝对误差可正可负,可以表明测量仪器的准确度,但不能反映误差在测量值中所占比例,相对误差反映测量误差在测量结果中所占的比例,衡量相对误差更有意义。
真值(μ):真值是客观存在的,但任何测量都存在误差,故真值只能逼近而不可测知,实际工作中,往往用“标准值”代替“真值”。标准值:采用多种可靠的分析方法、由具有丰富经验的分析人员经过反复多次测定
分析类资料
得出的结果平均值。
精密度:几次平行测定结果相互接近的程度。
各次测定结果越接近,精密度越高,用偏差衡量精密度。 偏差:单次测量值与样本平均值之差:
平均偏差:各次测量偏差绝对值的平均值。
相对平均偏差:平均偏差与平均值的比值。
标准偏差:各次测量偏差的平方和平均值再开方,比平均偏差更灵敏的反映较大偏差的存在,在统计学上更有意义。
相对标准偏差(变异系数)
准确度与精密度的关系:
1)精密度是保证准确度的先决条件:精密度不符合要求,表示所测结果不可靠,失去衡量准确度的前提。
2)精密度高不能保证准确度高。
换言之,准确的实验一定是精密的,精密的实验不一定是准确的。