手机版

Orthogonal polynomial method and odd vertices in matrix mode(6)

时间:2025-07-05   来源:未知    
字号:

We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.

ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES7

3.Thenumberofstaircases

iWeshallneed,inthefollowing,thequantitiesβnde nedby

ihnβn=dµ(λ)Pn(λ)λiPn 1(λ).(18)

Wedevotethepresentsectiontothecalculationoftheaboveintegral.TocomputeλiPn 1wetakeadvantageofananalogywithallstaircasesofisteps;whereeachstepcangoup,comedown,orstayatthesamelevel.Theanalogycomesfromarepeatedapplicationofthestepequation.Aftertheintegrationonlythestaircaseswhichendonestepup,contribute.Eachofthemrepresentsaproductoffactors:ifastepisdownfromlevelntotheleveln 1weadda

factorRn,andifitstaysatthesamelevelnweaddafactorAn.Figure3showsanexampleofthiskindofcalculation.Sinceeverycoe cientAj,Rj,isafunction

iFigure3.βncomputedfromthestaircases.

ioftheindexjitwouldbedi culttohandthe nalexpressionforβn;

luckily,asweshallsee,theplanarlimit(N→∞)willenableustoneglectthedi erencesamongthesequantitiesrelativetodi erentilevels.InthislimitwemustcomputetheexpressionforβnsupposingthateachstepdownyieldsafactorR,andeachstepthatstaysatthesamelevelyieldsafactorA.Thusthequestionis:Howmanyarethestaircasesofistepswhose nale ectistogouponestep?LetjbethestepsoftypeA,thentheotheri jaredividedinpstepsupandp 1steps downsothati=j+2p 1.WithouttheAstepsthere2p 1arepstaircasesof2p 1stepswhose nale ectistogouponestep.InsidethesestaircaseswewanttoinserttheremainingjlevelsoftypeA:thereare2p places wheretheycanbeinserted,and,fora xed2p+j 1staircase,therearechoices.Finallythenumberofstaircasesj

Orthogonal polynomial method and odd vertices in matrix mode(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)