手机版

Fitting Parameterized Three-dimensional Models to Images(12)

时间:2025-07-07   来源:未知    
字号:

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

bystartingwithsomeextramatches(thesolutionadoptedintheauthor’sapplications),byattemptingtoconvergefromseveralstartingpositions,orbyusingananalyticmethodappliedtosubsetsofthematches(asinDhomeetal.[4])tocomputeacandidatesetofstartingpositions.Yetanotherapproachistoconstructaninverselookuptablethatmapsfeaturemeasurementsintoapproximateviewpointparameterestimates.SuchanapproachhasbeenusedbyThompsonandMundy[32]forverticesandbyGoad[7]forawiderangeofarbitrarymodelfeatures.5Stabilizingthesolution

Aslongastherearesigni cantlymoreconstraintsonthesolutionthanunknowns,Newton’smethodasdescribedabovewillusuallyconvergeinastablemannerfromawiderangeofstart-ingpositions.However,inbothrecognitionandmotiontrackingproblems,itisoftendesirabletobeginwithonlyafewofthemostreliablematchesavailableandtousethesetonarrowtherangeofviewpointsforlatermatches.Evenwhentherearemorematchesthanfreeparameters,itisoftenthecasethatsomeofthematchesareparallelorhaveotherrelationshipswhichleadtoanill-conditionedsolution.Theseproblemsarefurtherexacerbatedbyhavingmodelswithmanyinternalparameters.

5.1Specifyingapriormodel

Alloftheseproblemscanbesolvedbyintroducingpriorconstraintsonthedesiredsolutionthatspecifythedefaulttobeusedintheabsenceoffurtherdata.Inmanysituations,thedefaultso-lutionwillsimplybetosolveforzerocorrectionstothecurrentparameterestimates.However,forcertainmotiontrackingproblems,itispossibletopredictspeci c nalparameterestimatesbyextrapolatingfromvelocityandaccelerationmeasurements,whichinturnimplynon-zeropreferencesforparametervaluesinlateriterationsofnon-linearconvergence.

Anyofthesepriorconstraintsonthesolutioncanbeincorporatedbysimplyaddingrowstothelinearsystemstatingthevaluethatwewishtoassigneachparameter:

Theidentitymatrixaddsonerowforspecifyingthevalueofeachparameter,andspeci esthedesireddefaultvalueforparameter.

Theobviousproblemhereisthatthereisnospeci cationofthetrade-offsbetweenmeetingtheconstraintsfromthedataversusthoseofthepriormodel.Theappropriatesolutionistoweighteachrowofthematrixequationsothateachelementoftheright-handsidehasthesamestandarddeviation.Therefore,asweminimizetheerrorvector,eachconstraintwillcontributeinproportiontothenumberofstandarddeviationsfromitsexpectedvalue.

Wewillnormalizeeachrowofthesystemtounitstandarddeviation.Iftheimagemea-surementsareinpixels,thenleavingthesewithastandarddeviationof1isalreadyagood rstestimatefortheerrorinmeasuringthepositionofimagefeatures.Inourmatchingalgorithm,

12

…… 此处隐藏:696字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(12).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)