手机版

Fitting Parameterized Three-dimensional Models to Images(2)

时间:2025-07-07   来源:未知    
字号:

Model-based recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. This paper extends current methods of parameter solving to handle objects with

1Introduction

Model-basedvisionallowspriorknowledgeoftheshapeandappearanceofspeci cobjectstobeusedduringtheprocessofvisualinterpretation.Reliableidenti cationscanbemadebyidentifyingconsistentpartialmatchesbetweenthemodelsandfeaturesextractedfromtheimage,therebyallowingthesystemtomakeinferencesaboutthescenethatgobeyondwhatisexplicitlyavailablefromtheimage.Byprovidingthislinkbetweenperceptionandpriorknowledgeofthecomponentsofthescene,model-basedrecognitionisanessentialcomponentofmostpotentialapplicationsofvision.

Oneimportantcomponentofmodel-basedvisionistheabilitytosolveforthevaluesofallviewpointandmodelparametersthatwillbest tamodeltosomematchingimagefeatures.Thisisimportantbecauseitallowssometentativeinitialmatchestoconstrainthelocationsofotherfeaturesofthemodel,andtherebygeneratenewmatchesthatcanbeusedtoverifyorrejecttheinitialinterpretation.Thereliabilityofthisprocessandthe nalinterpretationcanbegreatlyimprovedbytakingaccountofallavailablequantitativeinformationtoconstraintheunknownparametersduringthematchingprocess.Inaddition,parameterdeterminationisnecessaryforidentifyingobjectsub-categories,forinterpretingimagesofarticulatedor exibleobjects,andforroboticinteractionwiththeobjects.

Inmostcases,itispossibletosolveforallunknownparametersfora3-Dmodelfrommatchestoasingle2-Dimage.However,insomecircumstances—suchaswhenboththesizeanddistanceofthemodelisunknown—theaccuracyofparameterdeterminationcanbesub-stantiallyimprovedbysimultaneously ttingthemodeltoimagestakenfrommorethanoneviewpoint.Themethodspresentedherecanbeusedineithersituation.

Thelocationsofprojectedmodelfeaturesinanimageareanon-linearfunctionoftheview-pointandmodelparameters.Therefore,thesolutionisbasedonNewton’smethodoflineariza-tionanditerationtoperformaleast-squaresminimization.Thisisaugmentedbyastabilizationmethodthatincorporatesapriormodeloftherangeofuncertaintyineachparameterandesti-matesofthestandarddeviationofeachimagemeasurement.Thisallowsusefulapproximateso-lutionstobeobtainedforproblemsthatwouldotherwisebeunderdeterminedorill-conditioned.Inaddition,theLevenberg-Marquardtmethodisusedtoalwaysforceconvergenceofthesolu-tiontoalocalminimum.Thesetechniqueshaveallbeenimplementedandtestedaspartofasystemformodel-basedmotiontracking,andtheyhavebeenfoundtobereliableandef cient.2Previousapproaches

AttemptstosolveforviewpointandmodelparametersdatebacktotheworkofRoberts[30].Althoughhissolutionmethodswerespecializedtocertainclassesofobjects,suchasrectangularblocks,Robertsclearlyunderstoodthevalueofquantitativeparameterdeterminationformakingvisionrobustagainstmissingandnoisydata.Unfortunately,therewerefewattemptstobuilduponthisworkformanyyearsfollowingitsinitialpublication.

In1980,theauthor[19]presentedageneraltechniqueforsolvingforviewpointandmodel

2

…… 此处隐藏:1012字,全部文档内容请下载后查看。喜欢就下载吧 ……
Fitting Parameterized Three-dimensional Models to Images(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)