手机版

6.2二次函数的图象和性质(2)教案(2)

时间:2025-07-07   来源:未知    
字号:

九下学案

比较它们的性质,你可以得到什么结论? 四、例题:

【例1】 已知抛物线y=(m+1)x【例2】k为何值时,y=(k+2)x

m2 m

开口向下,求m的值. 是关于x的二次函数?

2

2

k

2

2k 6

【例3】在同一坐标系中,作出函数①y=-3x,②y=3x,③y=并根据图象回答问题:(1)当x=2时,y=y=-

12

12

12

x,④y=-

2

12

x2的图象,

x2比y=3x2大(或小)多少?(2)当x=-2时,

x2比y=-3x2大(或小)多少?

【例4】已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).

(1)求a、m的值;

(2)求抛物线的表达式及其对称轴和顶点坐标;

(3)x取何值时,二次函数y=ax2中的y随x的增大而减小; (4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积.

【例5】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为k的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.

五、小结

你有哪些收获?

六、作业

6.2二次函数的图象和性质(2)教案(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)