手机版

Localized Components Analysis(2)

时间:2025-07-12   来源:未知    
字号:

Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit

520D.Alcantaraetal.

Fig.1.ShapecharacteristicsofcorporacallosacapturedbybasisvectorsgeneratedwithPCAandLoCA.Arrowsstartatpointstracingtheaveragecorpuscallosum;theirmagnitudesindicatethedegreethatpointsmovewhenthecorrespondingshapeparameterisvaried.ThePCAvectorrepresentsacomplex,globalpatternofshapecharacteristicswhiletheLoCAvectorfocusesonthegenu.

bepresentedintermsofasmallnumberofparameters,eachofwhichrepresentsaneasily-graspedaspectofregionshape.Thiscouldpromoteinterpretationsoftheshapedi erenceintermsofdiseasecausesore ects.

Ourgoalistoencourageinterpretabilityofresultsbygeneratingshapepara-meterizationsthatarebothconcise–capturingsalientshapecharacteristicsinasmallnumberofparameters–andspatiallylocalized–accountingfortheshapeofaspatiallyrestrictedsub-regionineachparameter.Thehypothesisunderlyingthispaperisthatspatially-localizedandconciseshapeparameterizationsaremoreintuitiveforendusersbecausetheyallowthemtoconceptualizeobjectshapeintermsasmallnumberofobjectparts,whichareoftena ecteddi eren-tiallybyphysicalphenomena.Intheaboveexample,shapechangeduetodiseaseprocessesisknowntooccurinspatially-localizedbrainsub-regionsinavarietyofdisorders[1].Inaddition,conciseparameterizationsareattractivebecausethestatisticalpoweroftestsonthoseparametersisreducedaslittleaspossiblebycorrectionsformultiplecomparisons[2].

Wefollowthelinearsubspaceparadigmofexpressingeachshapeasalinearcombinationofprototypical,orbasisshapes.Thatis,ifeachshapeisrepresentedasavectorvjofthe2mor3mcoordinatesofmpointssampledfromitsboundary(i.e.,vj=[vj,1,vj,2,···vj,m],vj,k=[xk,yk]for2Dshapes),vjisapproximatedasalinearcombinationofkbasisvectors{e1,e2,···ek}:

vkj=k

i=1αj,i ei

Theshapeparametersarethecoe cientsαj,i.Linearsubspacemethodsareattractivebecausetheirlinearityineiallowsthemtobemanipulatedusingstandardtoolsfromlinearalgebra.

However,linearsubspacemethodsdonotinherentlyencouragelocality.Fig-ure1(left)depictsatypicaleigeneratedbytheclassicallinearsubspacemethod,principalcomponentsanalysis(PCA),appliedtotracingsofthecorpuscallosum(CC),ahumanbrainregion.ThebasisshapesummarizesacomplexpatternofshapecharacteristicsacrosstheentiretyoftheCC.Therefore,ifthecorrespond-ingαidi ersbetweengroups,theexplanationofthegroupdi erenceinphysical

…… 此处隐藏:483字,全部文档内容请下载后查看。喜欢就下载吧 ……
Localized Components Analysis(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)