手机版

Localized Components Analysis(3)

时间:2025-07-12   来源:未知    
字号:

Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit

LocalizedComponentsAnalysis521

termsiscomplex.Figure1(right),bycontrast,showsatypicaleigeneratedbythemethodpresentedbelow;di erencesinthecorrespondingαibetweengroupsgivesrisetoasimplephysicalexplanationintermsofthegenu,theCCsubregionwhoseshapeiscapturedbytheei.

WepresentLocalizedComponentsAnalysis(LoCA),amethodthatopti-mizestheeiforspatiallocalityandconcisenesssimultaneously.Itimprovesonpreviouslinearsubspacemethodsbyexplicitlyoptimizingforlocalizedshapeparametersandbyallowingtheusertomodulatethetradeo betweenlocal-ityandconcisenesswithgreater exibilitythanpreviousmethods.Theresult-ingshapecomponentscouldprovidesuccinctsummariesofspatially-localizedchangestobiomedicalstructuresduetoavarietyofphysicalphenomena;forexample,LoCAcouldprovideaconcisesummaryofthespatially-localizedCCshapechangesthatarethoughttoaccompanydiseasessuchasHIV/AIDS[3].Inprimateevolution,LoCAcouldsummarizetheshapesimilaritiesbetweentheskullsofgeneticallyrelatedspeciesusingafewintuitiveparameters.

WesummarizerelatedtechniquesinSection2,andpresentLoCAinSection3.AthoroughsetofexperimentsinSection4showstheintuitivenessand exibil-itygainedbyLoCAoverestablishedlinearsubspacemethodswhenappliedtohumanCC,colobinemonkeyskulls,andprimatehumeri(upperarm)bones.2RelatedWork

PCAhasbeenusedto ndconcisebasesforshapespacesinmedicalimageanalysis[4],morphometrics[5],computergraphics[6],andmanyothercontexts.InPCA,eiistheitheigenvectorofthecovariancematrixoftheexamplevjvec-tors;therefore,theeiareorthogonalandvkjisthebestk-thorderapproximationofvjundertheL2norm.TwoalgorithmsindependentlynamedSparsePCA(S-PCA)encourageasmanyentriesineitobezeroaspossible,eitherbyiterativelyadjustingthePCAbasis[7]orbyiterativelyconstructingsparseorthogonalvectors[8][9]1.Empiricallytheeioftenrepresentshapeinasmallnumberofspatially-localizedsubregions[9][11].Similarly,whileindependentcomponentsanalysis(ICA)andprincipalfactoranalysis(PFA)donotdirectlyoptimizealocality-relatedobjectivefunctionwhenestimatingei,theyappeartogeneratespatially-localizedcomponentsanyway[12][13].Alternatively,pre-de nedspa-tiallylocatedregionsofinterestcanbeintegratedintoPCA[14].OurapproachisinspiredbyS-PCAandfollowsasimilarstrategyofadjustingtheeiprovidedbyPCA;butweexplicitlyoptimizeforspatially-localized,ratherthansparse,ei.Unlike[14]worksoflocalizedmedialgeometricprimitiveshavethepotentialtocap-turelocalshapeinaconcisesetofparameters[15].Wefeelthatmedialandsurface-basedrepresentationscouldcapturecomplementaryshapeinformation.Wenote,however,thatnetworksofmedialprimitivescanbechallengingtocon-structinanautomatedwayandmaythereforebemorelabor-intensivethantheapproachwepresent.

1Athird,unrelatedSparsePCAsparsi esthevjbeforeapplyingstandardPCA[10].

…… 此处隐藏:950字,全部文档内容请下载后查看。喜欢就下载吧 ……
Localized Components Analysis(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)