难点:会运用二次函数知识解决有关综合问题。
教学过程:
一、例题精析,强化练习,剖析知识点
用待定系数法确定二次函数解析式.
例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)
(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)
当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)
强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;
(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用
例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交
教学目标
1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点
2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题
3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学重点和难点
重点:用三种方式表示变量之间二次函数关系
难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
☆做一做书本P56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
☆做一做书本P56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
☆议一议书本P56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
☆做一做书本P57
4、三种方法对比
☆议一议书本P58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
目标:
1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。
2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。
重点难点:
重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。
难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。
教学过程:
一、创设问题情境
如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?
分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。
如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1)
因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。
因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函数关系式是y=-0.2x2。
请同学们根据这个函数关系式,画出模板的轮廓线。
二、引申拓展
问题1:能不能以A点为原点,AB所在直线为x轴,过 …… 此处隐藏:1675字,全部文档内容请下载后查看。喜欢就下载吧 ……