FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
2.2ContactGeometry
2.2.1DynamicRollingRadius
Atanangularrotationof ,assumingthetreadparticlessticktothetrack,thede ectedtiremovesonadistanceofx,
Fig.2.2.
deflected tirerigid wheelFigure2.2:DynamicRollingRadius
Withr0asunloadedandrS=r0 rasloadedorstatictireradius
r0sin =x
and
(2.2)
r0cos =rS.
hold.
(2.3)
Ifthemovementofatireiscomparedtotherollingofarigidwheel,itsradiusrDthenhastobechosenso,thatatanangularrotationof thetiremovesthedistance
r0sin =x=rD .
Hence,thedynamictireradiusisgivenby
(2.4)
rD=
r0sin
.
(2.5)
For →0onegetsthetrivialsolutionrD=r0.
Atsmall,yet niteangularrotationsthesine-functioncanbeapproximatedbythe rsttermsofitsTaylor-Expansion.Then,(2.5)readsas
rD=r0
1
3=r0
11 2
6
.(2.6)
15