手机版

Evolution of Cosmological Density Distribution Function from(13)

时间:2025-07-08   来源:未知    
字号:

We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid

andthecorrespondingsolutionofequation(34)becomes

PE(δ,θ;t)=1

g(δ(q,t),δ(q,t′)) =dδdδ′g(δ,δ′)dt g(δ(q,t),δ(q,t′))=dt = dδdδ′g(δ,δ′)

TheevolutionequationofLagrangianjointPDFis

δ

dt dt PL(δ,t;δ′,t′).δ,δ′ dt=

δ,δ′1dtδD(δ f(p,t))δD(δ′ f(p,t′)).

RecallingthatthejointPDFsatisfyingtheevolutionequation(37)shouldbeinvariantunderthetransformation,(δ,t) (δ′,t′),thesolutionconsistentwiththeboundaryconditionPL(δ,t′;δ′,t′)=PL(δ;t′)δD(δ δ′)becomes

PL(δ,t;δ′,t′)=dpiPI(p)δD(δ f(p,t))δD(δ′ f(p,t′)).(38)

i

NoticethatifthelocalLagrangiandynamicsisdescribedbyasingleparameter,theintegralovertheinitialparameterp1inequation(38)canbeformallyperformed.TheresultantexpressionincludesDirac’sdeltafunction,leadingtotheone-to-onemappingbetweenδandδ′.Ontheotherhand,incaseswiththemultivariateinitialparameters,onecannotgenerallyperformtheaboveintegralandtheDirac’sdeltafunctionisnotfactoredout,leadingtothestochasticnatureoflocaldensity elds.

Evolution of Cosmological Density Distribution Function from(13).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)