We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Inthefollowingsubsection,we rstconsidertheLagrangianPDFandderivetheevolu-tionequation.ThenwederivetheevolutionequationforEulerianPDFinsection2.3.Theevolutionequationsderivedherearenotyetclosedbecauseoftheunknownfunctions.Insec-tion2.4wediscussanapproximatetreatmentusingthelocaldynamicsmodel,whichenablesustoobtainaclosedformofevolutionequationandtoconstructaconsistentsolution.
grangianone-pointPDF
ToderivetheevolutionequationfortheLagrangianone-pointPDF,weintroduceanarbitraryfunctionoflocaldensity,g(δ),andconsidertheevolutionofitsexpectationvalue, g(δ(q,t)) LevaluatedinaLagrangianframe.Thedi erentiationofthisexpectationvalue
withrespecttotimebecomes
dFig(δ)PL(F;t)=dδg(δ) ti
dtg(δ(q,t)) =
L dgdt =L idFidg(δ)dtPL(F;t).(8)
Theright-hand-sideoftheaboveequationcanbeexpressedbyintegratingbypartas
dg(δ) PL(F;t)= PL(F;t)dFidFig(δ)dtdtii PL(δ;t).= dδg(δ)dtδ
Here,thequantity[A]BdenotestheconditionalmeanofAforagivenvalueofB:
[A]B≡dFiAP(F|B)
Fi=B(9)(10)
withthefunctionP(F|B)beingtheconditionalPDFforagivenB,i.e.,P(F|B)=P(F)/P(B).