2011年海南省JAVA最新版本高级
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).
50、设有两个集合A和集合B,要求设计生成集合C=A∩B的算法,其中集合A、B和C用链式存储结构表示。
typedef struct node {int data; struct node *next;}lklist;
void intersection(lklist *ha,lklist *hb,lklist *&hc)
{
lklist *p,*q,*t;
for(p=ha,hc=0;p!=0;p=p->next)
{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;
if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}
}
}
51、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1
#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->data<t->data)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}//JudgeBST算法结束
52、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。
53、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h
1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,
