2011年海南省JAVA最新版本高级
.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s);
}
else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树
{p->rchild=null;
s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);
}
else //根结点有左子树和右子树
{s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列
s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列
}
while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树
{ s=delqueue(Q); father=s.f;
for (i=s.l; i<=s.h; i++)
if (in[i]==level[s.lvl]) break;
p=(bitreptr)malloc(sizeof(binode)); //申请结点空间
p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据
if (s.lr==1) father->lchild=p;
else father->rchild=p; //让双亲的子女指针指向该结点
if (i==s.l)
{p->lchild=null; //处理无左子女
s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s);
}
else if (i==s.h)
{p->rchild=null; //处理无右子女
s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);
}
else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列
s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列
}
}//结束while (!empty(Q))
return(p);
}//算法结束
10、 将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。
int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)
int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组
for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f<r)
{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号
if (!visited[v])
{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中
for (j=1,j<=n;j++)
if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列
else if (s[j]==s[v]) return(0);} //非二部图
}//if (!visited[v])
}//while
return(1); }//是二部图
[算法讨论] 题目给
的是连通无向图,若非连通,则算法要修改。
11、假设K1,…,Kn是n个关键词,试解答:
试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。
12、对二叉树的某层上的结
