A model of growth of icosahedral viral capsids is proposed. It takes into account the diversity of hexamers' compositions, leading to definite capsid size. We show that the observed yield of capsid production implies a very high level of self-organization
theconsecutiveT-numbers-e.g.iftheydi erby2orby3,oneshouldaddonenewhexamertype,abababorabcabc,respectively;butiftheydi erby4(e.g.fromT=21toT=25)orby5(fromT=31toT=36);onemustaddtwonewtypesof(ababab),orone(ababab)andone(abcabc)type.
6)Finally,oneshouldapplythesereasoningsalsotocapsidsthatarenotbuiltwithclassicalhexamersandpentamers.Onemayintroducea“dual”pictureinwhichnotthesides,buttheverticesofcapsomerscorrespondtorealproteins’extremities.TheexamplesofthealternativerealisationofT=3andT=4capsidswithpentamersanddimersonlyareshownintheFig.
10below.
Figure10:AlternativerealizationsofT=3andT=4capsidsOnecanobservehowthe2-and3-foldsymmetryaxisdoappear.
Itcanbeeasilydeducedfromthese guresthatthe(p a)-dimerscom-posingpentamersoccur60timesineachcapsid,whereasthe(b b)-dimersoccuronly30timesinacompleteT=3capsid,butthe(b c)-dimersoccur60timesineachT=4capsid.InsomecasesinaT=4capsidthetripletsof(b c)-dimersarereplacedeitherbyhexamers(thenweobtainagainaT=3capsid),orbystar-liketrimerswhichwillthenoccur20times.Whateverthedecoration,eachdi erentlettersymboloccurswiththesamefrequency,i.e.60timesineachcapsidindependentlyofthevalueofT.Thissuggeststhatalldimerproteinsareproducedatthesamerate,andthedi erentiationpro-cessthatleadstoexclusionrulesforsubsequentagglomerationoccurslateron.TheserealizationsofcapsidstructureareakintothedecorationrulesforcurvedPenrose-liketilingsintroducedbyR.Twarock[13]
15