A model of growth of icosahedral viral capsids is proposed. It takes into account the diversity of hexamers' compositions, leading to definite capsid size. We show that the observed yield of capsid production implies a very high level of self-organization
Figure1:Creationofanewpolygoninacavitybetweentwopolygons
clustersproperforfurtherfullereneconstructionbecomesclosetoq=0.957ateachagglomerationstep,ensuringq24oforderof10 1.
Inthecaseoffullerenes,thecorrectionisduetotheBoltzmann-Gibbsfactorsre ectingtheenergydi erencesbetweenfourbasicprocesses:creat-inganewpentagonina(6,6)cavity,orcreatinganewhexagonina(5,6)orina(6,6)cavity,assumingthattheenergybarrieragainstcreationoftwoorthreepentagonsstickingtogetherissobigthatthecorrespondingBoltzmannfactoriscloseto0.Thesefactorscouldbeevaluatedbyrequiringthatthesuccessiveprobabilitiesof ndingpentagonsamongallpolygonsinclustersofgivensize(afterann-thagglomerationstep)andthecorrespondingyieldsformageometricprogression[11]
Inthecaseoftheicosahedralcapsidformationthebuildingprocessisnotrandomatall.Onecanbeconvincedthatahighdegreeofself-organizationisinvolvedbyconsideringwhatwouldhappenifevenasmallamountofrandomnesswaspresent.Letusexcludefromourconsiderationsthecapsidsformedexclusivelybypentamers;i.e.puredodecahedralstructures,andlookatthebuild-upofbiggercapsidsinvolvingtwelvepentamersandthenecessarynumberofhexamers.
Letusdenotetheconcentration(orthenucleationrate)ofpentamersbyx,thatofhexamersby(1 x).Thentheprobabilitiesofdoubletsarereadilycalculatedasfollows:
P56=2·W56x(1 x)/Q;P66=W66(1 x)2/Q,(1)
whereWjk,j,k=5,6arethestatisticalweightsdependingonthevirustypeandonthechemicalbarriersbetweenvarioussides,and
Q=2·W56x(1 x)+W66(1 x)2
4