。从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分解释变量和被解释变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是建立在变量因果关系分析的基础上,研究其中解释变量的变动对被解释变量的具体影响,回归分析中必须明确划分解释变量和被解释变量,对变量的处理是不对称的。
2.3什么是随机扰动项和剩余项(残差)?它们之间的区别是什么?
答:总体回归函数中,被解释变量个别值Yi与条件期望E(YXi)的偏差是随机扰动项ui。
?的偏差是残差项e。残差项e在样本回归函数中,被解释变量个别值Yi与样本条件均值Yiii
概念上类似总体回归函数中的随机扰动项ui,可视为对随机扰动项ui的估计。
总体回归函数中的随机误差项是不可以直接观测的;而样本回归函数中的残差项是只要估计出样本回归的参数就可以计算的数值。
2.4为什么在对参数作最小二乘估计之前,要对模型提出古典假设?
答:在对参数作最小二乘估计之前,要对模型提出古典假设。因为模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计。只有具备一定的假定条件,所作出的估计才具有较好的统计性质。
2.6为什么可决系数可以度量模型的拟合优度?在简单线性回归中它与对参数的t检验的关系是什么?
答:可决系数是回归平方和占总离差平方和的比重,即由样本回归作出解释的离差平方和在总离差平方和中占的比重,如果样本回归线对样本观测值拟合程度好,各样本观测点与回归线靠得越近,由样本回归作出解释的离差平方和在总离差平方和中占的比重也将越大,反之拟合程度越差,这部分所占比重就越小。所以可决系数可以作为综合度量回归模型对样本观测值拟合优度的指标。
在简单线性回归中,可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,X对Y的解释能力越强,模型拟合优度越好。对参数的t检验是判断解释变量X是否是被解释变量Y的显著影响因素。二者的目的作用是一致的。
第三章 多元线性回归模型
3.4多元线性回归分析中,为什么要
对可决系数加以修正?修正可决系数与F检验之间有何区别与联系?
答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模型的多重可决系数带来缺陷,所以需要修正。可决系数只涉及变差,没有考虑自由度。如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比
