Abstract. We use a parallel direct solver based on the Schur complement method for solving large sparse linear systems arising from the finite element method. A domain decomposition of a problem is performed using a graph partitioning. It results in sparse
1
5
9ad
g
132610beh143711cfi154816(a)(b)(c)
Fig.1.Aquadrilateralmesh(a)with9elementsa–iand16nodes1–16.Thedual(b)andthenodal(c)graphderivedfromthemesh.
6.Backsubstitutiononsubdomains.
Thedomaindecomposition,andoptionallyorderingofnodes,aredoneasprepro-cessingsteps.Thesolverdoestherest.Phase3isthemostmemoryconsumingandPhase4isthemostcomputationallyintensivepartofthewholesolution.
Multileveltoolsarewidelyusedtosolvetheproblemofdomaindecompo-sition.Thedualgraphispartitionedintokparts,inducingsubdomainsandcorrespondingsubmatrices,sothatthesizesofsubmatricesareroughlyequal.De nition1.ConsideragraphG=(V,E)andanintegerk>=2.Anedgecut(nodecut)isasetofedges(vertices,respectively)whoseremovaldividesthegraphintoatleastkpartitions.Thek-waygraphpartitioningproblemisto.partitionVintokpairwisedisjointsubsetsV1,V2,...,Vksuchthat|Vi|=|V|/kandthesizeoftheedgecutisminimized.Apartitioningofagraphbyanodecutissimilar.
Eventhoughthesizesofsubmatricesareroughlyequal,theirmemoryre-quirementsortheirfactorizationtimeinPhase4arenotequal.Tode nethisformally,weusethetermqualitytodenotethememoryorcomputationalcom-plexity.
De nition2.Givenanunbalancingthresholdδ>=1,wesaythatapartitioningV1,V2,...,Vkwithasetofqualities{q1,q2,...,qk}isbalancedif
δ>qi)k/=(maxi=1
ApartitionViisoverbalancedifδ<qik/
ifatleastonepartitionisoverbalanced.kk i=1iqi.qi.(1) Thepartitioningisdisbalanced
Ingeneral,thequalitiesofsubmatricesarein uencedbytheorderingofvariables,aswasalreadymentionedin[2,3].
Inthispaper,wedescribeanovelapproachtothedomaindecompositionthatresultsintopartitioningwithbalancedmemoryrequirementsorbalanced