Abstract. We use a parallel direct solver based on the Schur complement method for solving large sparse linear systems arising from the finite element method. A domain decomposition of a problem is performed using a graph partitioning. It results in sparse
G0
Uncoarsening phase3G
GInitial partitioning phase
Fig.3.Theschemaofmultilevelk-waypartitioning.
coarsergraphscreateslevels.Amatchingisoftenusedtocollapse2verticesintoamultivertex.TheSHEMheuristicsformatching,introducedin[5],workswell.
Initialpartitioning.Whenthecoarsestgraphissu cientlysmall,itcanbe
partitionedbyanygraphpartitioningtechnique.
Uncoarsening.AcoarsergraphGlisuncoarsedtoGl 1andthepartitioning
ofGlisprojectedtoGl 1andthenre ned.TheFiduccia-Mattheyses(FM)heuristicsisasimple,fast,andsu cientlygoodoptionforthere nement.Itsearchescandidateverticesinthesetofboundaryvertices,i.e.,verticesadjacenttoavertexinanotherpartition.Thenittriestomoveaselectedvertexintootherpartitions.Themoveisacceptedifoneofthefollowingconditionsisful lled:
1.Thesizeoftheedgecutisdecreasedandthepartitioningremainsbal-anced.
2.Thesizeoftheedgecutisnotincreased,butthebalancingisimproved.Toimprovethebalancingofastronglydisbalancedpartitioning,abalancingstepmaybyadded.ItworksliketheFMheuristics,buttheconditionsforacceptingamovearedi erent:
1.Thebalancingisimproved.
2.Thesizeoftheedgecutisdecreased,butthebalancingisnotworsened.
2.2ReorderingandAssemblingofSubmatrices(Phases2+3)
Afterthedomaindecomposition,theinternalnodesinallpartitionsarereorderedtominimizethesizeoftheenvelope.
De nition3.Inthei-thstepofthefactorizationofasymmetricmatrixA,thewavefrontissetofpairs
<wi(A)={{r,i}: ars=0,r>=i,s=i}.(2)