Abstract. We use a parallel direct solver based on the Schur complement method for solving large sparse linear systems arising from the finite element method. A domain decomposition of a problem is performed using a graph partitioning. It results in sparse
factorizationtimeestimations.Thisinfactleadstoshorterexecutiontimeoftheparallelsolver.Theideaistointegrateanorderingalgorithmintoamultilevelgraphpartitioningschema.
Section2describesthepreviouswork.InSection3,thenewre nementheuris-ticsthatallowstobalancebettermemoryorcomputingcomplexityisexplained.InSection4,theresultsofexperimentsarepresentedandSection5concludesthepaper.
2
2.1PreviousWorkDomainDecomposition(Phase1)
Commonmethodsfordomaindecompositionarebasedongraphpartitioning,typicallyofdualgraphs.Asubdomainismadeofelementsfromthesameparti-tion.Thenodesbelongingtomorethanonesubdomainarecalledboundaryandtheremainingnodesareinternal.Variablesoftheinternal(boundary)nodesarecalledcorrespondingly.AnexampleonFig.2(a)showsa2-waypartitioningofGDofthequadrilateralmeshfromFig.1.Thecorrespondingdomaindecompo-sitionisshownonFig.2(b).Theboundarynodesare3,7,10,11,and14.NotethatthiswayofdomaindecompositionproducespartitioningofthenodalgraphGNbyanodecut,asshownonFig.2(c).
1
9
135adg14142610be371110h153711cfi1648(a)(b)(c)
Fig.2.PartitioningofthemeshfromFig.1usingitsdualgraph(a)into2partitions(b)andcorrespondingpartitioningofthenodalgraph(c).Theedgecut(a)isindicatedbyadashedlineandnodesinthenodecut(c)as lledsquares.
MultilevelGraphPartitioning.Popularmultilevelgraphpartitioningsoft-wareisMETIS[4,5],CHACO[6],JOSTLE[7],andSCOTCH[8].Ourworkisbasedonthemultilevelk-waygraphpartitioningimplementedinMETIS[5].Thisschemaconsistsofthefollowing3phases,shownonFig.3.
Coarsening.AsequenceofsmallergraphsGl=(Vl,El)isconstructedfrom
theoriginalgraphG=G0=(V0,E0)sothat|Vl|>|Vl+1|.Thesequenceof