Abstract. We use a parallel direct solver based on the Schur complement method for solving large sparse linear systems arising from the finite element method. A domain decomposition of a problem is performed using a graph partitioning. It results in sparse
Fig.4.Data owoftheQBheuristics
NNtoelementsfromGD0,pcorrespondtoapartitionGpofG.Thentheinternal
NverticesofGNparereorderedbytheSloanalgorithm.Finally,thequalityofGpisestimatedandreturnedtothere nementheuristics.
InthecurrentimplementationoftheQBheuristics,nodeshaveeithercon-stantnumberofDOFsd>0orareconstrained,i.e.,thenumberofDOFsis0.NAllconstrainednodesareomittedinthestepofprojectionofGD0,ptoGp,i.e.,thereorderingisperformedonlywithnodeswiththenumberofDOFsd>0.Afterthat,nodeigeneratesequationsnumbereddi,di+1,...di+d 1andwavefrontswdi(A),wdi+1(A),...,wdi+d 1(A).
TheoriginalFMheuristicscomputessumsofweightsofverticesinthesourceandtargetpartitionsforeverycandidatemove.Infact,theweightofthecan-didatevertexissubtractedfromtheweightofthesourcepartitionandaddedtotheweightofthetargetpartition.However,intheQBheuristics,thiswouldimplythereorderingandestimationcomputingforeverycandidatemoveandthiswouldextremelyslowdownthere nement.Thus,wehadtomodifytheconditionsofmoveacceptanceasfollows:
1.Thesizeoftheedgecutisdecreasedandthetargetpartitionisnotoverbal-anced.
2.Thequalityqsofthesourcepartitionisgreaterthanthequalityqtofthetargetpartition,butthesizeoftheedgecutisnotincreased.
Theconditionsofmoveacceptanceofthebalancingsteparealsomodi ed:
1.qs>qt.
2.Thesizeoftheedgecutisdecreasedandqs>=qt.
Onlyifamoveisaccepted,thequalitiesqsandqtarerecomputed.Notethatthenewconditionsmayleadtooverbalancingofthetarget,oreventhesource,partitions.Therefore,ifthenewvalueqsisgreaterthanitspreviousvalue,thevertexmoveisnulli ed.