手机版

高三测试-函数及导数测试题-2013-8-1(6)

时间:2025-06-18   来源:未知    
字号:

对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质P.

现给出如下映射:

①f1:V→R,f1(m)=x-y,m=(x,y)∈V; ②f2:V→R,f2(m)=x2+y,m=(x,y)∈V; ③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.

其中,具有性质P的映射的序号为________.(写出所有具有性质P的映射的序号)

解析:a=(x1,y1),b=(x2,y2).

f1[λa+(1-λ)b]=f1[λx1+(1-λ)x2,λy1+(1-λ)y2]=λx1+(1-λ)x2-λy1

-(1-λ)y2.

λf1(a)+(1-λ)f1(b) =λ(x1-y1)+(1-λ)(x2-y2) =λx1-λy1+(1-λ)x2-(1-λ)y2 =λx1+(1-λ)x2-λy1-(1-λ)y2. ∴f1具有性质P

f2[λa+(1-λ)b]=f2[λx1+(1-λ)x2,λy1+(1-λ)y2]=[λx1+(1-λ)x2]2+λy1+(1-λ)y2

222λf2(a)+(1-λ)f2(b)=λ(x21+y1)+(1-λ)(x2+y2)=λx1+(1-λ)x2+λy1+(1

-λ)y2

≠f2[λa+(1-λ)b] ∴f2不具有性质P

f3[λa+(1-λ)b]=λx1+(1-λ)x2+λy1+(1-λ)y2+λf3(a)+(1-λ)f3(b) =λ(x1+y1+1)+(1-λ)(x2+y2+1) =λx1+(1-λ)x2+λy1+(1-λ)y2+1

高三测试-函数及导数测试题-2013-8-1(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)