手机版

Storage device performance prediction with CART models(13)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

averageresponsetime

(b)Predictionerrorfor90thpercentileresponsetime

Figure6:Comparisonofpredictorsforasingle9GBAtlas10Kdisk.

Forexample,constantlyover-predictsforcello99cbecausethemodelwasnevertrainedwththesmallsequentialaccessesthatareparticulartocello99c.Section5.4givesaninformalerroranalysisandidenti esinadequatetrainingbeingthemostsigni canterrorsource.

Fourth,highquantileresponsetimesaremoredif culttopredict.Weobservelargerpredictionerrorsfromallthepredictorsfor90thpercentileresponsetimepredictionsthanforaverageresponsetimepredic-tions.TheaccuracyadvantageofthetwoCART-basedmodelsishigherfor90thpercentilepredictions.

Insummary,thetwoCART-basedmodelsgiveaccuratepredictionswhenthetrainingandtestingwork-loadssharethesamecharacteristicsandinterpolatewellotherwise.Thegoodaccuracysuggeststheeffec-tivenessoftherequestandworkloaddescriptionsincapturingimportantworkloadcharacteristics.

5.3ModelingADiskArray

Figure7comparestheaccuracyofthefourpredictorsinmodelingthediskarray.ThepredictorisnotpresentedbecausetheSAPtracedoesnotprovideenoughinformationonarrivaltimeforustoknowtheoffsetwithinaweek.Theoverallresultsaresimilartothoseforthesingledisk.ThetwoCART-basedmodelsarethemostaccuratepredictors.Theabsoluteerrorsbecomesmallerduetothedecreasedresponsetimefromthesingledisktothediskarray.Therelativeaccuracyamongthepredictors,however,staysthesame.Overall,theCART-baseddevicemodelingapproachworkswellforthediskarray.

5.4ErrorAnalysis

Thissectionpresentsaninformalerroranalysistoidentifythemostsigni canterrorsourcefortheCART-baseddevicemodels.

Storage device performance prediction with CART models(13).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)