手机版

Storage device performance prediction with CART models(18)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

AppendixA:ConstructingCARTModels

ACARTmodelisapiecewise-constantfunctiononamulti-dimensionalspace.Thisappendixgivesabriefdescriptionofthemodelconstructionalgorithm.Pleasereferto[4]foracompletediscussionofCARTmodels.

TheCARTmodelhasabinarytreestructurebuiltbyrecursivebinarysplits.SupposewehaveNobser-vations,Xii12N,withcorrespondingoutputsYii12N.Eachobservationconsistsofpinputfeatures,Xixi1xip).Theconstructionalgorithmstartswithatreewithonlyarootnodeandgrowsthetreedownwardbysplittingonenodeatime.Thechosensplitoffersthemostbene tinreducingthemeansquarederror.TheaverageYiforalltheXisinaleafnodeisusedasthepredictivevaluefortheleafnode.Thealgorithmcontinuesuntilcertaincriteriaaremet.

Wedescribehowthesplitischosenindetailnext.Thealgorithmevaluatesallthepossibledistinctsplitsonalltheleafnodesofthetree(ortherootnodeinthe rststep).Anodecorrespondstoahyer-rectangleregionoftheinputvectorspace,andasplitdecidesalongwhichfeatureandatwhatvaluetheregionshouldbedividedintotwo.Forexample,atnodet,asplitonfeaturejatvaluevde nestwonodes,nodet1andnodet2.

Xi

nodet1

Xixij

v

Xi

nodet

Xi

nodet2

Xixij

v

Xinodet

IfwedenotethenumberofobservationsinnodetasNtandthepredictivevalueasYt,themeansquarederroratnodetbeforethesplitis

MSEt

i:Xinodet

1

Nt1

Yi

¯t1Y

2

i:Xinodet2

1

Storage device performance prediction with CART models(18).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)