手机版

Storage device performance prediction with CART models(14)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

averageresponsetime

(b)predictionerrorfor90thpercentileresponsetime

Figure7:ComparisonofpredictorsforaRAID5diskarrayof8Atlas10Kdisks.

Amodel’serrorconsistsoftwoparts.The rstpartcomesfromintrinsicrandomnessoftheinputdata,suchasmeasurementerror,andthiserrorcannotbecapturedbyanymodel.Therestoftheerrorcomesfromthemodelingapproachitself.TheCART-basedmodelsincurerroratthreeplaces.First,thetransformationfromworkloadstovectorsintroducesinformationloss.Second,theCART-basedmodelsusepiece-wiseconstantfunctions,whichcouldbedifferentfromthetruefunctions.Third,alow-qualitytrainingtraceyieldsinaccuratemodelsbecauseCARTreliesontheinformationfromthetrainingdatatomakepredictions.Aninadequatetrainingsethasonlyalimitedrangeofworkloadsandleadstolargepredictionerrorsforworkloadsoutsideofthisrange.We ndthatthelasterrorsource,inadequatetrainingdata,causesthemosttroubleinourexperiments.

Weconductasmallexperimenttoverifyourhypothesis.Figure8(a)comparesthedifferenceinse-quentialitybetweencello99aandcello99c.Thespectrumofsequentiality(from0%to100%ofrequestsintheworkloadbeingsequential)isdividedinto20buckets,andthegraphsshowsthenumberofone-minuteworkloadfragmentsineachbucketforbothtraces.Weobserveasigni cantnumberofhighsequentialityfragmentsincello99b,butnofragmentgoesbeyond50%sequentialityincello99a.Thisdifferenceleadstolargepredictionerrorsforhighsequentialityfragmentswhenwebuildtheworkload-levelmodeloncello99aanduseittopredicttheperformanceofcello99b,asshownin(b).Theerrorsarereducedsigni cantlywhenweincludethe rsthalfofcello99bintraining.Thedramaticerrorreductionsuggeststhatpredictioner-rorsfromtheothersourcesarenegligiblewhencomparedwiththeonesintroducedbyinadequatetraining.Figure8(c)furthershowstheabsoluteerrorhistogramwith1millisecondbuckets.Thespikeshiftto0millisecondswhenwetrainthemodelonthecombinedtrainingtrace,indicatingthatitisreasonabletoas-sumeazero-meannoiseterm.Weconcludefromthisevidencethatcontributingeffortsinblack-boxdevicemodelingshouldbedirectedtowardgeneratingagoodtrainingsetthatcoversabroadrangeofworkloadtypes.

…… 此处隐藏:298字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)