手机版

Storage device performance prediction with CART models(7)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

Figure2:Modelconstructionthroughtraining.RTiistheresponsetimeofrequestri.

4PredictingPerformancewithCART

ThissectionpresentstwowaysofconstructingdevicemodelsbasedonCARTmodels.

4.1Overview

OurgoalistobuildamodelforagivenstoragedevicewhichpredictsdeviceperformanceasafunctionofI/Oworkload.Thedevicemodelreceivesaworkloadasinputandpredictsitsaggregateperformance.Wede neaworkloadasasequenceofdiskrequests,witheachrequest,ri,uniquelydescribedbyfourattributes:arrivaltime(ArrivalTimei),logicalblocknumber(LBNi),requestsizeinnumberofdiskblocks(Sizei),andread/writetype(RWi).Thestoragedevicecouldbeasingledisk,adiskarray,orsomeotherlike-interfacedcomponent.Theaggregateperformancecanbeeithertheaverageorthe90-thpercentileresponsetime.

OurapproachusesCARTtoapproximatethefunction.Weassumethatthemodelconstructionalgorithmcanfeedanyworkloadintothedevicetoobserveitsbehaviorforacertainperiodoftime,alsoknownas“training.”Thealgorithmthenbuildsthedevicemodelbasedontheobservedresponsetimes,asillustratedinFigure2.Modelconstructiondoesnotrequireanyinformationabouttheinternalsofthemodeleddevice.Therefore,itisgeneralenoughtomodelanydevice.

Regressiontoolsareanaturalchoicetomodeldevicebehavior.Suchtoolsaredesignedtomodelfunc-tionsonmulti-dimensionalspacegivenasetofsampleswithknownoutput.Thedif cultyistotransformworkloadsintodatapointsinamulti-dimensionalfeaturespace.Weexploretwowaystoachievethetrans-formationasillustratedinFigure3.Arequest-levelmodelrepresentsarequestriasavectorRi,alsoknownasthe“requestdescription,”andusesCARTmodelstopredictper-requestresponsetimes.Theaggregateperformanceisthencalculatedbyaggregatingtheresponsetimes.Aworkload-levelmodel,ontheotherhand,representstheentireworkloadasasinglevectorW,orthe“workloaddescription,”andpredictstheaggregateperformancedirectlyfromW.Inbothapproaches,thequalityoftheinputvectorsiscriticaltothemodelaccuracy.Thenexttwosectionspresenttherequestandworkloaddescriptionsindetail.

4.2Request-LevelDeviceModels

ThissectiondescribestheCART-basedrequest-leveldevicemodel.ThismodelusesaCARTmodeltopredicttheresponsetimesofindividualrequestsbasedonrequestdescriptions.Themodel,therefore,isabletogeneratetheentireresponsetimedistributionandoutputanyaggregateperformancemeasures.

Weadoptthefollowingtwoconstraintsindesigningtherequestdescription.1.Ridoesnotincludeanyactualresponsetimes.Onecouldrelaxthisconstraintbyallowingthein-clusionoftheresponsetimeinformationforalltherequeststhathavealreadybeenservedwhenthecurrentrequestarrives.Thisrelaxation,however,isfeasibleonlyforonlineresponsetimepredictions;itwouldnotbeappropriateforapplicationplanningtasksbecausetheplannerdoesnotrunworkloadsondevices.

…… 此处隐藏:898字,全部文档内容请下载后查看。喜欢就下载吧 ……
Storage device performance prediction with CART models(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)