手机版

Storage device performance prediction with CART models(19)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

12000

Number of Requests

9000

6000

3000

Time (aggregated in 10 seconds)

Disk Blocks (aggregated in 1000 blocks)

20

Disk block number

Entropy value

15 10 5 0

Entropy on timeEntropy on LBNJoint entropyCorrelation

60000

40000

20000

Arrival time

0 5

10Scale

15 20

Entropyplotonone-dimensionaldatasets.Theone-dimensionalentropyplotcapturescharacteristicsofindividualattributes,suchasthetemporalandspatialburstiness.Thesetwotypesofburstinessmeasurestheburstinessinthearrivalprocessandtheskewinaccessfrequenciesofdiskblocks.Weusetheentropyplotforarrivaltimeasanexampletoshowhowtheentropyplotworks.

Givenaworkload,wecanderiveits“margin”onthearrivaltimebycountingthenumberofrequeststhatarriveintothesystemateachtimetick.ThetopgraphofFigure9(a)showsthesampletrace’smarginonarrivaltime.

2n.WecalculatetheAssumethatthetraceis2ntimetickslong,andthemarginisCii12

entropyvalueatscalekbyapplyingtheentropyfunctionontheaggregatedmarginatscalek.TheaggregatedmarginisCkjj122kwhere

Intuitively,theentirelengthofthemarginisdividedinto2kequi-lengthedintervalsatscalek.Thus,applyingtheentropyfunctiononCkgives

where

Pkj

Number of Requests

(a)Sampledisktrace(b)Entropyplot

Figure9:Asampledisktraceanditsentropyplot.

C

k

2n

k

j

i1

∑C2n

k

j

1

i

H

k

2n

k

∑Pkjlog2Pkj

j1

C

k

j

Storage device performance prediction with CART models(19).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)