手机版

Storage device performance prediction with CART models(8)

时间:2025-07-13   来源:未知    
字号:

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment. This work explores the application of a machine learning tool, CART models, to storage device modeling. Our appr

Figure3:TwotypesofCART-baseddevicemodels.

2.Ricanbecalculatedfromrj,ji.Thisconstraintsimpli estherequestdescription.Inmostcases,theresponsetimeofacurrentrequestdependsonlyonpreviousrequestsandtherequestitself.

OurrequestdescriptionRiforrequestricontainsthefollowingvariables:

Ri

TimeDiffi1

TimeDiffik

LBNi

LBNDiffi1

LBNDiffil

Sizei

RWi

Seqi

whereTimeDiffikArrivalTimeiArrivalTimei2k1andLBNDiffilLBNiLBNil.The rstthreegroupsoffeaturescapturethreecomponentsoftheresponsetime,andSeqiindicateswhethertherequestisasequentialaccess.The rstk1featuresmeasurethetemporalburstinessoftheworkloadwhenriarrives,andsupportpredictionofthequeuingtime.WeallowtheTimeDifffeaturestoexponentiallygrowthedistancefromthecurrentrequesttohistoryrequesttoaccommodatelargebursts.Thenextl1featuresmeasurethespatiallocality,supportingpredictionoftheseektimeoftherequest.SizeiandRWisupportpredictionofthedatatransfertime.

Thetwoparameters,kandl,determinehowfarwelookbackforrequestburstsandlocality.Smallvaluesdonotadequatelycapturethesecharacteristics,rgevalues,ontheotherhand,leadstoahigherdimensionality,meaningtheneedforalargertrainingsetandalongertrainingtime.Theoptimalvaluesfortheseparametersarehighlydevicespeci c,andSection5.1showshowweselecttheparametervaluesinourexperiments.

4.3Workload-LevelDeviceModels

Theworkload-levelmodelrepresentstheentireworkloadasasingleworkloaddescriptionandpredictsaggregatedeviceperformancedirectly.TheworkloaddescriptionWcontainsthefollowingfeatures.

W

Averagearrivalrate

Readratio

Averagerequestsize

Percentageofsequentialrequests

Temporalandspatialburstiness

Correlationsbetweenpairsofattributes

Storage device performance prediction with CART models(8).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)